organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N'-(2-Chlorobenzylidene)-4-methylbenzohydrazide

De-Cheng Wang,^a Xiao-Rong Li,^b Lei Gao,^b Yong Hai^c* and Jiang-Ning Wang^{b*}

^aCapital Medical University, Beijing 100069, People's Republic of China, ^bCentral Laboratory, Luhe Teaching Hospital of the Capital Medical University, Beijing 101100, People's Republic of China, and ^cBeijing Chao-Yang Hospital, Beijing 100020, People's Republic of China

Correspondence e-mail: haiyong136@163.com, wangjiangning135@163.com

Received 22 May 2012; accepted 26 May 2012

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; R factor = 0.037; wR factor = 0.104; data-to-parameter ratio = 11.9.

In the title compound, C₁₅H₁₃ClN₂O, the molecule displays a trans conformation with respect to the C=N bond. The two aromatic rings form a dihedral angle of 12.0 (3)°. In the crystal, molecules are connected via N-H···O hydrogen bonds into chains propagating along the *c*-axis direction.

Related literature

For the crystal structures of hydrazones, see: Wardell et al. (2006); Kummerle et al. (2009). For bond-length data, see: Allen et al. (1987).

Å

Experimental

Crystal data	
C ₁₅ H ₁₃ ClN ₂ O	b = 13.4436 (16) A
$M_r = 272.72$	c = 9.1643 (11) Å
Monoclinic, $P2_1/c$	$\beta = 96.576 \ (2)^{\circ}$
a = 11.0697 (14) Å	V = 1354.8 (3) Å ³

Z = 4Mo $K\alpha$ radiation $\mu = 0.28 \text{ mm}^{-1}$

Data collection

Bruker SMART CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.973, \ T_{\max} = 0.981$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.104$ S = 1.032096 reflections 176 parameters 1 restraint

T = 298 K $0.10 \times 0.10 \times 0.07~\mathrm{mm}$

11486 measured reflections 2096 independent reflections 1682 reflections with $I > 2\sigma(I)$ $R_{\rm int}=0.026$ $\theta_{\rm max} = 23.9^{\circ}$

> H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{\rm max} = 0.16 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.18 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2\cdotsO1^{i}$	0.90 (1)	2.05 (1)	2.8976 (19)	159 (2)
Symmetry code: (i)	$x_1 - y + \frac{1}{2}, z + \frac{1}{2}$			

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by National Natural Science Foundation of China (81071586).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6816).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA
- Kummerle, A. E., Raimundo, J. M., Leal, C. M., da Silva, G. S., Balliano, T. L., Pereira, M. A., de Simone, C. A., Sudo, R. T., Zapata-Sudo, G., Fraga, C. A. M. & Barreiro, E. J. (2009). Eur. J. Med. Chem. 44, 4004-4009.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wardell, S. M. S. V., de Lima Ferreira, M., de Souza, M. V. N., Wardell, J. L., Low, J. N. & Glidewell, C. (2006). Acta Cryst. C62, o118-o121.

supplementary materials

Acta Cryst. (2012). E68, o1960 [doi:10.1107/S1600536812024099]

N'-(2-Chlorobenzylidene)-4-methylbenzohydrazide

De-Cheng Wang, Xiao-Rong Li, Lei Gao, Yong Hai and Jiang-Ning Wang

Comment

Recently, a number of hydrazones have been prepared and structurally characterized (Wardell *et al.*, 2006; Kummerle *et al.*, 2009). As an extension of work on the structural characterization of hydrazones, the title compound, Fig. 1, is reported here.

The molecule of the compound displays a *trans* conformation with respect to the C=N bond. The two aromatic rings form a dihedral angle of 12.0 (3)°. The bond lengths are within normal ranges (Allen *et al.*, 1987). In the crystal, molecules are connected *via* intermolecular N—H···O hydrogen bonding (Table 1) into chains along the *c* axis (Fig. 2).

Experimental

2-Chlorobenzaldehyde (0.1 mmol, 14.0 mg) and 4-methylbenzhydrazide (0.1 mmol, 15.0 mg) were stirred in 20 ml methanol at room temperature for 30 min. A large number of colorless blocks were formed by slow evaporation of the methanolic solution containing the compound in air.

Refinement

The amino H atom was located from a difference Fourier map and refined isotropically, with N–H distance restrained to 0.90 (1) Å. The remaining hydrogen atoms were positioned geometrically and treated as riding on their parent atoms, with C–H distances of 0.93–0.96 Å, and with $U_{iso}(H) = 1.2U_{eq}(C_{aromatic})$ and $1.5U_{eq}(C_{methyl})$.

Computing details

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT* (Bruker, 1998); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Figure 1

The molecular structure of the title compound showing displacement ellipsoids drawn at the 30% probability level.

Figure 2

The crystal packing of the title compound viewed along the *b* axis. Dashed lines show intermolecular hydrogen bonds.

N'-(2-Chlorobenzylidene)-4-methylbenzohydrazide

Crystal data	
C ₁₅ H ₁₃ ClN ₂ O $M_r = 272.72$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 11.0697 (14) Å b = 13.4436 (16) Å c = 9.1643 (11) Å $\beta = 96.576$ (2)° V = 1354.8 (3) Å ³ Z = 4	F(000) = 568 $D_x = 1.337 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5323 reflections $\theta = 2.4-24.3^{\circ}$ $\mu = 0.28 \text{ mm}^{-1}$ T = 298 K Block, colorless $0.10 \times 0.10 \times 0.07 \text{ mm}$
Data collection	
Bruker SMART CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator	ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{\min} = 0.973, T_{\max} = 0.981$

11486 measured reflections	
2096 independent reflections	
1682 reflections with $I > 2\sigma(I)$	
$R_{\rm int} = 0.026$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.037$	Hydrogen site location: inferred from
$wR(F^2) = 0.104$	neighbouring sites
S = 1.03	H atoms treated by a mixture of independent
2096 reflections	and constrained refinement
176 parameters	$w = 1/[\sigma^2(F_0^2) + (0.051P)^2 + 0.4392P]$
1 restraint	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.16 \text{ e} \text{ Å}^{-3}$
	$\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

 $\theta_{\rm max} = 23.9^{\circ}, \ \theta_{\rm min} = 2.4^{\circ}$

 $h = -11 \rightarrow 12$ $k = -15 \rightarrow 15$ $l = -9 \rightarrow 10$

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}*/U_{ m eq}$
C11	0.73671 (7)	-0.12300 (4)	0.12887 (7)	0.0804 (3)
N1	0.68758 (14)	0.16431 (11)	-0.06660 (16)	0.0437 (4)
N2	0.73084 (15)	0.24311 (11)	0.02057 (16)	0.0440 (4)
O1	0.76428 (13)	0.33102 (10)	-0.18063 (13)	0.0560 (4)
C1	0.62975 (16)	-0.00454 (13)	-0.0883 (2)	0.0444 (5)
C2	0.65016 (18)	-0.10128 (14)	-0.0383 (2)	0.0508 (5)
C3	0.6060 (2)	-0.18270 (15)	-0.1196 (2)	0.0611 (6)
Н3	0.6209	-0.2467	-0.0835	0.073*
C4	0.5403 (2)	-0.16849 (17)	-0.2538 (3)	0.0673 (6)
H4	0.5098	-0.2229	-0.3088	0.081*
C5	0.5195 (2)	-0.07398 (17)	-0.3069 (2)	0.0655 (6)
Н5	0.4752	-0.0645	-0.3984	0.079*
C6	0.56356 (18)	0.00679 (16)	-0.2258 (2)	0.0548 (5)
H6	0.5489	0.0704	-0.2636	0.066*
C7	0.67597 (17)	0.08183 (13)	-0.0024 (2)	0.0453 (5)
H7	0.6967	0.0764	0.0986	0.054*
C8	0.76952 (17)	0.32495 (13)	-0.04646 (19)	0.0415 (4)
С9	0.81732 (17)	0.40832 (12)	0.04982 (19)	0.0404 (4)
C10	0.86287 (18)	0.39728 (13)	0.1951 (2)	0.0455 (5)
H10	0.8641	0.3347	0.2385	0.055*
C11	0.90664 (18)	0.47857 (15)	0.2764 (2)	0.0534 (5)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H11	0.9381	0.4694	0.3740	0.064*	
C12	0.90528 (18)	0.57268 (14)	0.2177 (2)	0.0527 (5)	
C13	0.8605 (2)	0.58265 (16)	0.0728 (3)	0.0707 (7)	
H13	0.8585	0.6454	0.0299	0.085*	
C14	0.8183 (2)	0.50216 (15)	-0.0111 (2)	0.0661 (6)	
H14	0.7903	0.5111	-0.1098	0.079*	
C15	0.9510 (2)	0.66110 (18)	0.3086 (3)	0.0776 (7)	
H15A	0.9073	0.6662	0.3930	0.116*	
H15B	0.9387	0.7205	0.2507	0.116*	
H15C	1.0362	0.6530	0.3402	0.116*	
H2	0.740 (2)	0.2368 (18)	0.1184 (11)	0.080*	

Atomic displacement parameters $(Å^2)$

	T T 11	1722	1 733	T 712	1713	173
	$U^{\prime\prime}$	U^{zz}	055	U^{12}	U	<i>U</i> ²³
Cl1	0.1227 (6)	0.0485 (4)	0.0643 (4)	0.0043 (3)	-0.0136 (4)	0.0008 (3)
N1	0.0568 (10)	0.0352 (8)	0.0386 (9)	-0.0009 (7)	0.0025 (7)	-0.0062 (7)
N2	0.0665 (10)	0.0329 (8)	0.0319 (8)	-0.0025 (7)	0.0022 (8)	-0.0019 (7)
O1	0.0919 (11)	0.0446 (8)	0.0314 (7)	-0.0007 (7)	0.0065 (7)	0.0009 (6)
C1	0.0503 (11)	0.0411 (10)	0.0433 (11)	-0.0045 (8)	0.0118 (9)	-0.0052 (8)
C2	0.0595 (12)	0.0430 (11)	0.0510 (12)	-0.0032 (9)	0.0104 (10)	-0.0071 (9)
C3	0.0737 (14)	0.0397 (11)	0.0710 (15)	-0.0060 (10)	0.0132 (12)	-0.0104 (10)
C4	0.0755 (15)	0.0543 (14)	0.0714 (16)	-0.0171 (11)	0.0052 (13)	-0.0230 (12)
C5	0.0703 (15)	0.0673 (15)	0.0565 (13)	-0.0130 (11)	-0.0027 (11)	-0.0109 (11)
C6	0.0607 (12)	0.0499 (12)	0.0528 (12)	-0.0068 (10)	0.0028 (10)	-0.0039 (10)
C7	0.0591 (12)	0.0387 (10)	0.0380 (10)	-0.0013 (9)	0.0054 (9)	-0.0036 (8)
C8	0.0542 (11)	0.0357 (10)	0.0343 (10)	0.0069 (8)	0.0044 (8)	0.0016 (8)
C9	0.0508 (11)	0.0338 (9)	0.0373 (10)	0.0016 (8)	0.0074 (8)	0.0007 (7)
C10	0.0599 (12)	0.0358 (10)	0.0404 (11)	-0.0023 (8)	0.0033 (9)	0.0043 (8)
C11	0.0643 (13)	0.0512 (12)	0.0427 (11)	-0.0079 (10)	-0.0019 (9)	-0.0029 (9)
C12	0.0534 (12)	0.0444 (12)	0.0610 (13)	-0.0091 (9)	0.0099 (10)	-0.0072 (10)
C13	0.1038 (19)	0.0339 (11)	0.0721 (16)	-0.0111 (11)	0.0008 (14)	0.0086 (10)
C14	0.1066 (18)	0.0429 (12)	0.0456 (12)	-0.0066 (12)	-0.0057 (12)	0.0091 (10)
C15	0.0850 (17)	0.0563 (14)	0.0914 (19)	-0.0249 (12)	0.0092 (14)	-0.0196 (13)

Geometric parameters (Å, °)

Cl1—C2	1.736 (2)	С7—Н7	0.9300
N1—C7	1.269 (2)	C8—C9	1.486 (2)
N1—N2	1.379 (2)	C9—C10	1.376 (3)
N2—C8	1.353 (2)	C9—C14	1.380 (3)
N2—H2	0.895 (9)	C10—C11	1.379 (3)
O1—C8	1.227 (2)	C10—H10	0.9300
C1—C2	1.389 (3)	C11—C12	1.374 (3)
C1—C6	1.391 (3)	C11—H11	0.9300
C1—C7	1.462 (2)	C12—C13	1.370 (3)
C2—C3	1.382 (3)	C12—C15	1.505 (3)
C3—C4	1.368 (3)	C13—C14	1.377 (3)
С3—Н3	0.9300	C13—H13	0.9300
C4—C5	1.371 (3)	C14—H14	0.9300

C4—H4	0.9300	C15—H15A	0.9600	
С5—С6	1.374 (3)	C15—H15B	0.9600	
С5—Н5	0.9300	C15—H15C	0.9600	
С6—Н6	0.9300			
C7—N1—N2	116.71 (15)	O1—C8—C9	121.18 (16)	
C8—N2—N1	117.93 (14)	N2	116.96 (15)	
C8—N2—H2	121.8 (16)	C10-C9-C14	118.10 (17)	
N1—N2—H2	119.9 (16)	C10—C9—C8	123.99 (15)	
C2—C1—C6	116.78 (17)	C14—C9—C8	117.90 (16)	
C2—C1—C7	122.13 (17)	C9—C10—C11	120.29 (17)	
C6—C1—C7	121.09 (17)	C9—C10—H10	119.9	
C3—C2—C1	121.96 (19)	C11—C10—H10	119.9	
C3—C2—Cl1	117.91 (16)	C12—C11—C10	122.04 (18)	
C1—C2—Cl1	120.10 (14)	C12—C11—H11	119.0	
C4—C3—C2	119.5 (2)	C10-C11-H11	119.0	
С4—С3—Н3	120.2	C13—C12—C11	117.12 (18)	
С2—С3—Н3	120.2	C13—C12—C15	121.4 (2)	
C3—C4—C5	119.95 (19)	C11—C12—C15	121.5 (2)	
C3—C4—H4	120.0	C12—C13—C14	121.75 (19)	
C5—C4—H4	120.0	C12—C13—H13	119.1	
C4—C5—C6	120.4 (2)	C14—C13—H13	119.1	
C4—C5—H5	119.8	C13—C14—C9	120.66 (19)	
С6—С5—Н5	119.8	C13—C14—H14	119.7	
C5—C6—C1	121.4 (2)	C9—C14—H14	119.7	
С5—С6—Н6	119.3	C12—C15—H15A	109.5	
C1-C6-H6	119.3	C12—C15—H15B	109.5	
N1—C7—C1	119.45 (16)	H15A—C15—H15B	109.5	
N1—C7—H7	120.3	C12—C15—H15C	109.5	
С1—С7—Н7	120.3	H15A—C15—H15C	109.5	
O1—C8—N2	121.86 (16)	H15B—C15—H15C	109.5	

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N2—H2···O1 ⁱ	0.90 (1)	2.05 (1)	2.8976 (19)	159 (2)

Symmetry code: (i) x, -y+1/2, z+1/2.